On calculation of stationary density of autoregressive processes

نویسندگان

  • Jirí Andel
  • Karel Hrach
چکیده

An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

On continuous-time autoregressive fractionally integrated moving average processes

In this paper, we consider a continuous-time autoregressive fractionally integrated moving average (CARFIMA) model, which is defined as the stationary solution of a stochastic differential equation driven by a standard fractional Brownian motion. Like the discrete-time ARFIMA model, the CARFIMA model is useful for studying time series with short memory, long memory and antipersistence. We inves...

متن کامل

Temporal aggregation of stationary and nonstationary discrete-time processes

We study the autocorrelation structure and the spectral density function of aggregates from a discrete-time process. The underlying discrete-time process is assumed to be a stationary AutoRegressive Fractionally Integrated MovingAverage (ARFIMA) process, after suitable number of differencing if necessary. We derive closed-form expressions for the limiting autocorrelation function and the normal...

متن کامل

TEMPORAL AGGREGATION OF STATIONARY AND NONSTATIONARY DISCRETE-TIME PROCESSES By Henghsiu Tsai and K. S. Chan

We study the autocorrelation structure and the spectral density function of aggregates from a discrete-time process. The underlying discrete-time process is assumed to be a stationary AutoRegressive Fractionally Integrated Moving-Average (ARFIMA) process, after suitable number of differencing if necessary. We derive closed-form expressions for the limiting autocorrelation function and the norma...

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Kybernetika

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2000